A whopper of a number

Lee A. Butler

Department of Mathematics University of Bristol lee.butler@bris.ac.uk

November 24, 2009

Model theory? Whassat?

Can't get no satisfaction

A really big number

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Models and theories

• Model theory = Models + Theories.

A really big number

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Models and theories

- Model theory = Models + Theories.
- A theory:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Models and theories

- Model theory = Models + Theories.
- A theory:
 - $\forall x \forall y \forall z (x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $\forall x \ x \cdot e = e \cdot x = x$
 - $\forall x \exists y \ x \cdot y = e$.

Models and theories

- Model theory = Models + Theories.
- A theory:
 - $\forall x \forall y \forall z (x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $\forall x \ x \cdot e = e \cdot x = x$
 - $\forall x \exists y \ x \cdot y = e$.
- Models:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Models and theories

- Model theory = Models + Theories.
- A theory:
 - $\forall x \forall y \forall z (x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $\forall x \ x \cdot e = e \cdot x = x$
 - $\forall x \exists y \ x \cdot y = e$.
- Models:

• $(\mathbb{R}^{\times}, \times, 1).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Compactness

Theorem (Gödel's compactness theorem)

A theory T is satisfiable if and only if every finite subset of T is satisfiable.

Proof.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Compactness

Theorem (Gödel's compactness theorem)

A theory T is satisfiable if and only if every finite subset of T is satisfiable.

Proof.

Ask Dave.

A really big number

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Model theory? Whassat?

Can't get no satisfaction

A really big number

- PA $\models \mathbb{N}$
- PA tell you about "=", "1", and "+1".

- PA $\models \mathbb{N}$
- PA tell you about "=", "1", and "+1".
- 1. 1 < ω
 2. 1 + 1 < ω
 3. 1 + 1 + 1 < ω ...

- PA $\models \mathbb{N}$
- PA tell you about "=", "1", and "+1".
- 1. $1 < \omega$ 2. $1 + 1 < \omega$ 3. $1 + 1 + 1 < \omega \dots$
- $\omega = \text{big.}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- PA $\models \mathbb{N}$
- PA tell you about "=", "1", and "+1".
- 1. 1 < ω
 2. 1 + 1 < ω
 3. 1 + 1 + 1 < ω ...
- $\omega = big.$
- Exists thing that looks like $\mathbb N$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- PA $\models \mathbb{N}$
- PA tell you about "=", "1", and "+1".
- 1. $1 < \omega$ 2. $1 + 1 < \omega$ 3. $1 + 1 + 1 < \omega \dots$
- $\omega = \text{big.}$
- Exists thing that looks like N, but has a *really* big number in it.